img

官方微信

高级检索

中国沙漠 ›› 2024, Vol. 44 ›› Issue (1): 61-74.DOI: 10.7522/j.issn.1000-694X.2023.00068

• • 上一篇    下一篇

祁连山及周边地区气温与降水的动力降尺度模拟

李霞1,2(), 杨保1()   

  1. 1.中国科学院西北生态环境资源研究院 沙漠与沙漠化重点实验室,甘肃 兰州 730000
    2.中国科学院大学,北京 100049
  • 收稿日期:2023-03-12 修回日期:2023-05-16 出版日期:2024-01-20 发布日期:2023-12-26
  • 通讯作者: 杨保
  • 作者简介:杨保(E-mail: yangbao@lzb.ac.cn
    李霞(1998—),女,四川达州人,硕士研究生,主要从事区域气候研究。E-mail: lx0305dt@163.com
  • 基金资助:
    国家重点研发计划项目(2022YFF0801102)

Dynamic downscaling simulation of temperature and precipitation in the Qilian Mountains and its surrounding areas

Xia Li1,2(), Bao Yang1()   

  1. 1.Key Laboratory of Desert and Desertification,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,China
    2.University of Chinese Academy of Sciences,Beijing 100049,China
  • Received:2023-03-12 Revised:2023-05-16 Online:2024-01-20 Published:2023-12-26
  • Contact: Bao Yang

摘要:

祁连山及其周边地区是季风-西风交互作用的敏感区,气候变化机制复杂。在研究区域进行了为期一年的参数化方案组合敏感性试验,从5组方案组合中选出模拟效果最佳的参数化方案组合,利用偏差校正过的CMIP6数据驱动最佳参数化方案组合设置下的区域气候模式WRF,对祁连山及周边地区开展了2005—2014年间为期10 a的动力降尺度模拟。结果显示:(1)WRF模式对气温的模拟普遍较好,不同的参数化方案组合对气温的模拟影响不大。WRF模式对降水的模拟受参数化方案组合影响较大,模拟精度整体较气温差。参数化方案组合的敏感性试验结果显示:Thompson云微物理方案、Grell-D积云对流方案、RRTM-Dudhia辐射物理方案和 Noah 陆面过程方案的参数化方案组合最适用于祁连山及周边地区。地形资料敏感性试验结果显示高分辨率地形数据集对气温与降水的模拟未见明显改善。(2)模拟气温与降水的空间分布特征基本能够再现真实观测数据的空间分布特征。气温与降水的空间分布受海拔影响很大,在高海拔地区气温比周围低海拔地区偏低,降水量则是偏高,模拟气温与观测气温之间的相关性好于对降水的模拟。模拟偏差主要表现在对气温的模拟普遍存在低估,对降水量的模拟存在高估。在站点尺度上,模拟温度和降水与观测温度和降水都有着几乎一致的正态分布,各站点上的温度模拟偏差主要出现在冬季,降水模拟偏差则出现在夏季。

关键词: WRF, 祁连山, 参数化方案评估, 动力降尺度

Abstract:

The study region is located in the Qilian Mountains and its surrounding areas, which are sensitive zone for monsoon-westerly interaction, and have complex climate change mechanisms. In this paper, a one-year sensitivity test was conducted to select the optimum parameterization scheme combination from five sets of schemes. With the optimum parameterization setting, a ten-year dynamic downscaling simulation of the study region was carried out over the period 2005-2014 using the regional climate model WRF driven by bias-corrected CMIP6 data. The results show that: (1) The WRF model is capable to simulate the air temperature well; different Parameterization scheme combinations perform weak effect on the simulation of temperature whilst the simulation of precipitation by the WRF model is more influenced by the parametric scheme combinations; and the simulation accuracy of precipitation is generally poorer than that of temperature. Sensitivity tests on the Parameterization scheme combinations show that the parametric scheme combination of the Thompson cloud microphysics scheme, Grell-D cumulus convection scheme, RRTM-Dudhia radiation physics scheme, and Noah land surface process scheme is the most suitable for the Qilian Mountains and surrounding areas. The results of the sensitivity tests on topographic data show no significant improvement in the simulation of temperature and precipitation. (2) The spatial distribution characteristics of simulated temperature and precipitation are generally able to reproduce the observed datasets. The spatial distribution of temperature and precipitation is greatly influenced by the altitude, with lower temperature but more precipitation at the higher altitudes than the surrounding lower altitudes; the correlation coefficients between the simulated and observed temperature is much significant than that on precipitation. Simulation biases are mainly identified in the underestimation of temperature but overestimation of precipitation. At the station sites, both simulated temperature and precipitation have almost identically normal distribution patterns for observed temperature and precipitation, specifically with deviations in winter temperature and summer precipitation simulations at each station.

Key words: WRF, the Qilian Mountains, parametric scheme evaluation, dynamic downscaling

中图分类号: